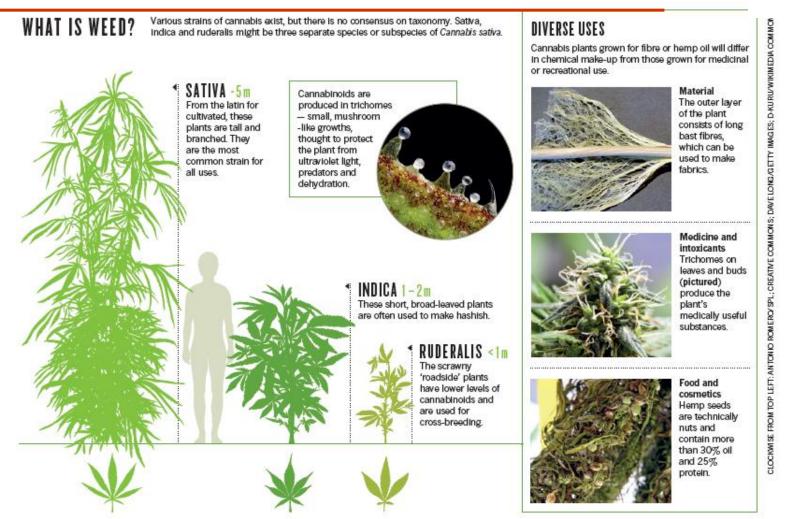
Cannabiskonsum, -konsumstörungen und die Folgen Medizinisches Cannabis

Prof. Dr. med. Ulrich W. Preuss
FA Psychiatrie und Psychotherapie
Suchtmedizin, Gerontopsychiatrie, Liaison- und Konsiliarpsychiatrie,
Psychosomatik in der Psychiatrie, klinischer Supervisor (DGGPN)

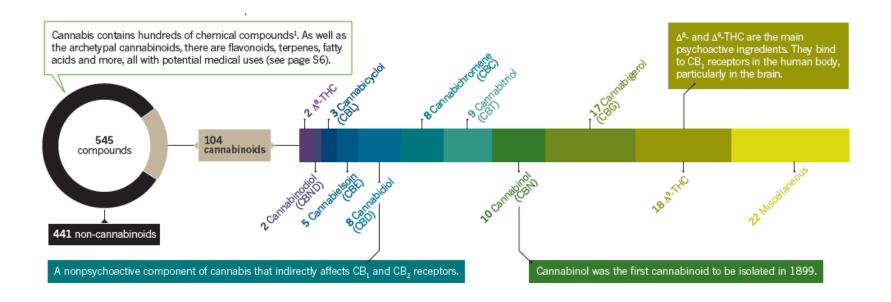
Gliederung

- 1. Einleitung Cannabis: eine pharmakologisch komplexe Substanz
 - a. Wichtigste Bestandteile: THC, CBD
 - b. Cannabiswirkungen
 - c. Cannabisrezeptoren und ECS
 - d. Risiken durch Cannabiskonsum
- 2. Cannabis: Chancen und Risiken medizinischen Cannabis
 - a. Indikationen Somatische und psychische Erkrankungen
 - b. Administrationsformen
 - c. Anwendungssicherheit und Verträglichkeit
- Zusammenfassung medizinisches und nicht-medizinisches Cannabis
 Chancen und Risiken


Einleitung

Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

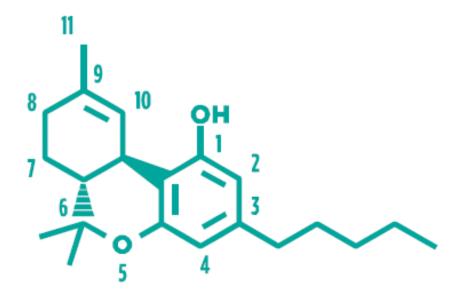
Cannabinoide

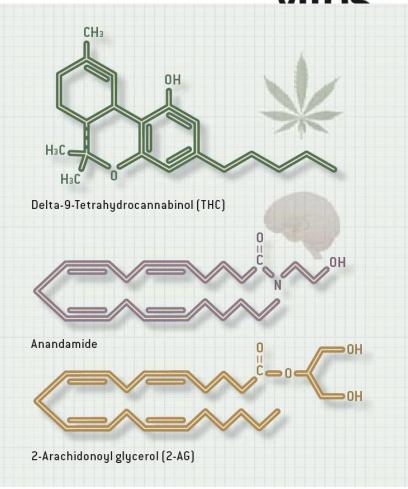


Gould Nature September 2015

Cannabinoide: Pharmakologische Eigenschaften

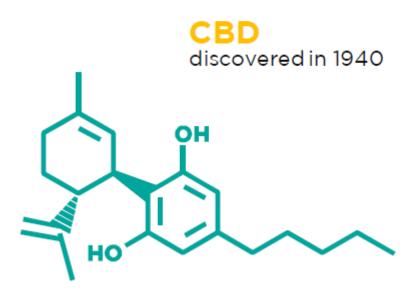
Tetrahydrocannabinol (THC) is responsible for the mental high that can result from using cannabis. But there are many other cannabinoids and chemicals found in the plant, the roles of which are as yet unknown.


Gould Nature September 2015


THC – Chemische Struktur

THC discovered in 1964

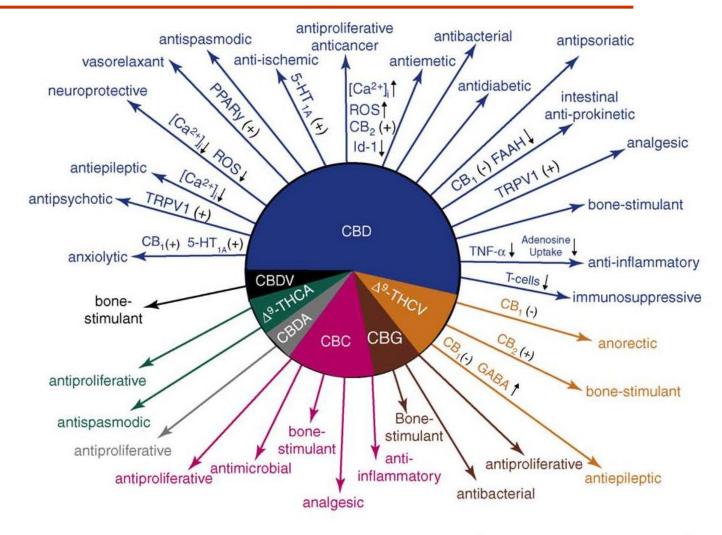
Aktive Form durch Trocknen oder Erhitzen


THC – Wirkungen

- THC hat vielfältige pharmakologische Effekte:
- Anxiolytisch / Sedierend (CB1)
- Analgetisch (CB1)
- Antikonvulsiv (CB1)
- Appetitstimulierend (CB1)
- Anti-emetisch (CB1)
- Anti-inflammatorisch / Immunsuppressiv (CB2)
- Kontrazeptiv (CB2)? ETC.

CBD: chemische Struktur

Konversion aus CBDa durch Erhitzen


CBD – Wirkungen

- Nicht psychoaktiv, keine signifikante Affinität an den CB1 und -2 Rezeptoren
- Blockiert die Bildung von 11-OH-THC (dem am stärksten psychoaktiven Metabolite von THC)
- Potenter CYP450 3A1 Hemmer
- Mildert die Nebenwirkungen von THC (Angst, Dysphorie, Panik, paranoide symptome), verbessert mögliche therapeutische Wirkungen von THC's (Izzo et al 2009, Russo 2011).
- CBD bindet an eine Reihe anderer Rezeptoren (GPR55, TRPV1, TRPV2, TRPA1, PPARγ, 5-HT1A, α3 Glycin etc).
- CBD vermindet die Aufnahme von Adenosin (Antagonist zu Koffein), hemmt FAAH (erhöht AEA), hemmt proinflammaorische Cytokine (TNF-α, IL-6, IL-1β), ist ein Antioxidanz (wirksamer Vitamin C oder E, McPartland et al 2015)

Pharmakologische Eigenschaften der Cannabinoide

FUNKTIONELLE BEDEUTUNG DES ECB

ANGSTSTÖRUNGEN

PTBS

Schneider & Elphick (2013)

BPS

EMOTIONSREGULATION

PARKINSON

SCHMERZ

SOZIALVERHALTEN

AUTISMUS

MS

ALZHEIMER

GEDÄCHTNIS

ADHS

AUFMERKSAMKEIT

MOTORIK

EPILEPSIE

DEPRESSION

STRESSREAKTIVITÄT

SCHIZOPHRENIE

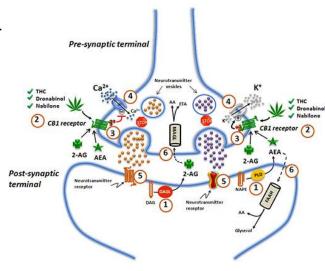
BELOHNUNG

SUCHT

MOTIVATION

SCHLAF

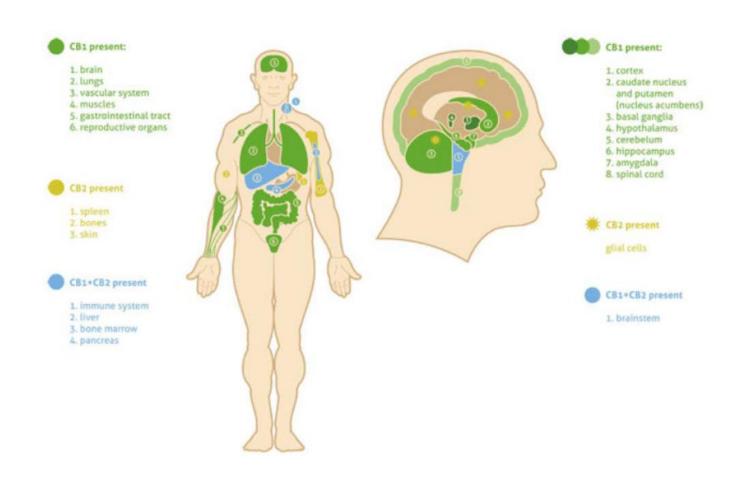
ESSSTÖRUNGEN


APPETIT

Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

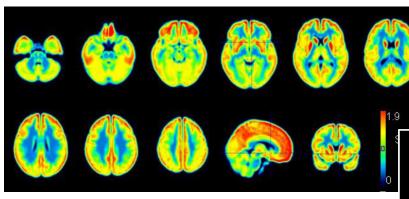
Das Endocannabinoidsystem (ECB)

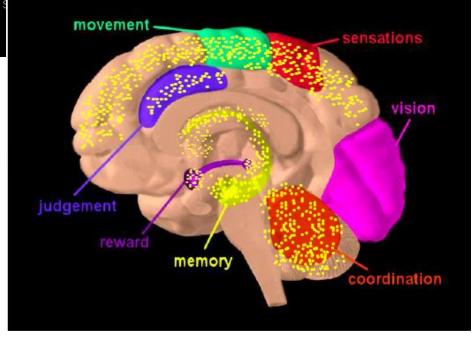
- Das Signalübertragungssystem ist entwicklungsbiologisch sehr alt und existiert in Säugetieren, Fischen und wirbellosen Tieren:
 - CB-1 Rezeptoren, CB-2 Rezeptoren,
 - Endocannabinoide (Anandamid, 2-AG) werden an der Synapse nach Bedarf gebildet,
 - Spezifische Enzyme (Auf- und Abbau der Endocannabinoide).



www.hc-sc.gc.ca

- Vielfältige Wechselwirkungen zwischen dem CB-1 Rezeptorsystem und zahlreichen Neurotransmittern und Neuromodulatoren.
- Vielfältige Funktionen, z.B. Regulation der Homöostase im ZNS, des Herz-Kreislauf-Systems, der Körpertemperatur, des Schlaf-Wach-Rhythmus.


Physiologische Wirkungen von Cannabinoiden


Cannabinoid Receptors in Human Brain

·Van Loere et al., 2007

- Brain Development
- Memory and Cognition
- Motivational Systems
- & Reward
- Appetite
- Immunological Function
- Reproduction
- Movement Coordination
- Pain Regulation
- & Analgesia

Risiken und Schäden durch den Konsum von Cannabinoiden

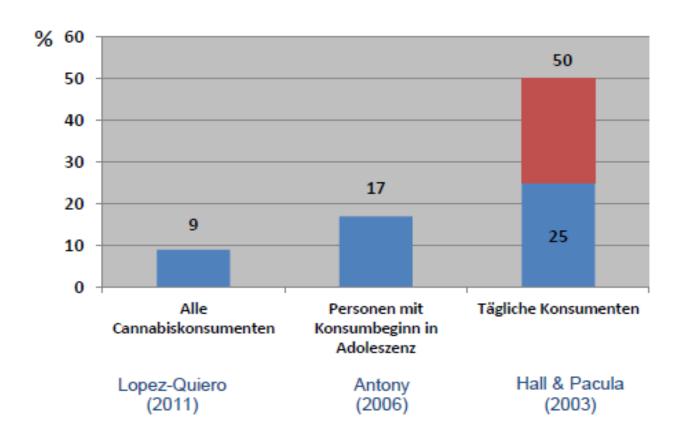
Risiken durch den Konsum von Cannabinoiden

- Beeinträchtige Wahrnehmung
- Vermindertes
 Kurzzeitgedächtnis
- Verminderte Konzentration, Koordination
- Beeinträchtiges Urteilsvermögen
- Erhöhtes Unfallrisiko
- Motivationsverlust
- Verhaltensenthemmung
- Erhöhtes Risikoverhalten

- Erhöhte kardiale Belastung
- Angst, Panikattacken, paranoide Syndrome
- Halluzinationen
- Schädigung des Reproduktions- und Immunsystems
- Erhöhtes Tumorrisiko (?)
- Psychische Abhängigkeit
- Schädigung des

Atmungssystems (Bronchitis, Verschlechterung bei COPD)

Cannabiskonsumstörungen


Cannabisabhängigkeit (F12.2) (ICD 10): Innerhalb eines Jahres sind 3 oder mehr der folgenden Kriterien erfüllt:

- Craving (starker Wunsch/Zwang zu konsumieren)
- Verminderte Kontrollfähigkeit bezüglich des Konsums
- Körperliches Entzugssyndrom; Konsum mit dem Ziel Entzugssymptome zu mildern
- Toleranz
- Vernachlässigung anderer Aktivitäten oder Interessen
- Anhaltender Konsum trotz Nachweis eindeutiger schädlicher Folgen
- Eingeengtes Verhaltensmuster im Umgang mit der Substanz (charakteristisch)
- Schädlicher Gebrauch von Cannabis (F12.1)
 Wenn der Konsum zu einer Gesundheitsschädigung (körperliche oder psychische Störung, z.B. depressiven Episode) führt.

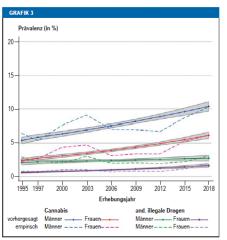
A.	Cannabisabstinenz nach starkem, längerfristigem Konsum (nahezu täglicher Konsum über mehrere Monate)
В.	3 oder mehr der folgenden Zeichen/Symptome innerhalb etwa einer Woche nach obigem: Reizbarkeit, Zom, Aggression Nervosität, Ängstlichkeit Schlafschwierigkeiten (Insomnie, Alpträume) Appetitminderung, Gewichtsverlust Rastlosigkeit gedrückte Stimmung Beeinträchtigung durch mindestens 1 der physischen Symptome: abdominaler Schmerz, Zittrigkeit/Tremor, Schwitzen, Fieber, Schüttelfrost Kopfschmerz
C.	Die Zeichen/Symptome aus Kriterium B verursachen klinisch bedeutsame Beeinträchtigungen in sozialen, beruflichen oder anderen bedeutsamen Bereichen.
D.	Die Zeichen/Symptome sind nicht auf eine andere medizinische Ursache zurückzuführen und lassen sich nicht besser durch eine andere psychische Störung erklären.

Cannabiskonsum und Cannabiskonsumstörungen

Hoch 2016

Originalarbeit

Trends des Substanzkonsums und substanzbezogener Störungen



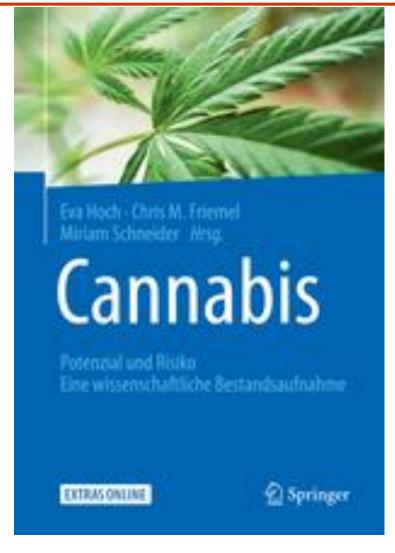
Auswertung des Epidemiologischen Suchtsurveys von 1995 bis 2018

Nicki-Nils Seitz, Kirsten Lochbühler, Josefine Atzendorf, Christian Rauschert, Tim Pfeiffer-Gerschel, Ludwig Kraus

Substanzkonsum	Männer	Frauen
Tabak (30 Tage)	fallend*2	fallend*2
täglich Tabak (30 Tage)	fallend*2	fallend*2
Alkohol (30 Tage)	fallend	fallend
Rauschtrinken (30 Tage)	fallend*2	steigend*2
Cannabis (12 Monate)	steigend*2	steigend*2
andere illegale Drogen (12 Monate)	konstant	steigend
Analgetika (30 Tage, wöchentlich* ¹)	steigend	steigend
Analgetika (30 Tage, wöchentlich*1) Hypnotika/Sedativa (30 Tage, wöchentlich*1)	steigend fallend	steigend fallend

^{*}¹Gebraucher der jeweiligen Arzneimittelgruppe *²statistisch signifikanter Unterschied zwischen M\u00e4nnen und Frauen zum Signifikanzniveau 5 % (bei gleichf\u00f6rmigem Trend)

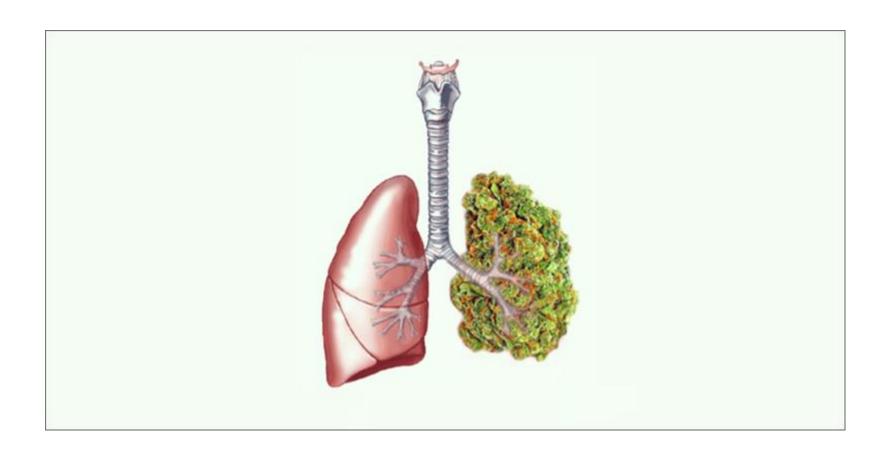
		1997	2000	2006	2009	2012	2018
		% [95-%-KI]	% [95-%-KI]	% [95-%-KI]	% [95-%-KI]	% [95-%-KI]	% [95-%-KI]
Männer							
Nikotin	Abhängigkeit		8,5 [7,6; 9,6]	11,1* [9,9; 12,4]	8,6 [7,7; 9,6]	10,4* [9,3; 11,7]	7,8 [6,9; 8,9]
Alkohol	Missbrauch	5,4 [4,5; 6,6]		6,3* [5,4; 7,3]		5,3* [4,6; 6,2]	4,0 [3,4; 4,7]
	Abhängigkeit	4,2 [3,4; 5,1]	4,5 [3,8; 4,8]	4,0 [3,3; 4,8]		5,2* [4,4; 6,1]	4,8 [4,1; 5,5]
Cannabis	Missbrauch	0,7 [0,4; 1,2]		1,2 [0,9; 1,7]		0,8 [0,6; 1,2]	0,7 [0,5; 1,0]
	Abhängigkeit	0,7 [0,4; 1,1]	0,5* [0,3; 0,8]	0,7 [0,5; 1,0]		0,8 [0,5; 1,1]	0,9 [0,6; 1,3]
Analgetika	Abhängigkeit		1,8 [1,4; 2,3]			2,5 [2,0; 3,1]	1,9 [1,4; 2,5]
Hypnotika/ Sedativa	Abhängigkeit		0,9 [0,7; 1,3]			1,3* [0,9; 1,8]	0,6 [0,4; 1,0]
Frauen							
Nikotin	Abhängigkeit		6,2 [5,5; 7,0]	8,5 [7,4; 9,6]	7,2 [6,3; 8,1]	7,7* [6,9; 8,6]	5,7 [5,0; 6,6]
Alkohol	Missbrauch	1,5 [1,0; 2,1]		1,2 [0,9; 1,7]		1,8* [1,4; 2,2]	1,5 [1,2; 1,9]
	Abhängigkeit	1,0 [0,6; 1,4]	1,2 [0,9; 1,6]	1,5 [1,2; 2,0]		2,1*[1,7; 2,5]	1,9 [1,6; 2,3]
Cannabis	Missbrauch	0,3 [0,2; 0,7]		0,2 [0,1; 0,4]		0,2 [0,1; 0,4]	0,4 [0,3; 0,6]
	Abhängigkeit	0,1 [0,0; 0,4]	0,2 [0,1; 0,4]	0,3 [0,2; 0,6]		0,2 [0,1; 0,4]	0,3 [0,2; 0,5]
Analgetika	Abhängigkeit		2,7 [2,3; 3,3]			3,4* [2,9; 4,1]	3,1 [2,6; 3,7]
Hypnotika/ Sedativa	Abhängigkeit		0,7 [0,5; 0,9]			1,5* [1,2; 2,0]	0,5 [0,3; 0,8]


Die Prävalenzzahlen der Trends substanzbezogener Störungen unterscheiden sich geringfügig von den Publikationen der Vorjahre, da die Codierung einzelner diagnostischer Kriterien angepasst wurde.

Vorhergesagte und empirisch ermittelte Prävalenz des Konsums von Cannabis und

^{*} p < 0,05 für den Vergleich mit Referenzjahr 2018; logistische Regression zur Vorhersage der Prävalenz mit Jahr, Alter, Erhebungsmodus; 95.%-KI 95.%-Konfidenzintervall

2. Cannabis Chancen und Risiken



Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

Somatische Folgen

Kardiovaskuläres System und Lunge: ERGEBNISSE 1

Psychotherapie Herborn

Lunge: Chronischer Cannabiskonsum erhöht das Risiko für respiratorische Symptome (Husten, keuchenden Atem, Sputum Produktion, Engegefühle in der Brust)

hoch moderat gering sehr gering

- Herz: Akute Cannabis-Effekte umfassen meist Vasodilatation, Bluthochdruck und Tachykardie.
 hoch moderat gering sehr gering
 x
- Zu wenige Daten zur Risikobewertung der kardiovaskulärer Effekte in Zusammenhang mit chronischem Cannabiskonsum

z.B. Infarkte:	hoch	moderat	gering	sehr gering
Z.B. Illiaikte.			X	
Vorhofflimmern:	hoch	moderat	gering	sehr gering
vornomminem.				X

Tumorerkrankungen ORGANISCHE FOLGEN: ERGEBNISSE 1

Tumorerkrankungen: Signifikanter Zusammenhang zwischen Cannabiskonsum und Hodenkrebsrisiko, insbesondere Nicht-Seminome; kein signifikanter Zusammenhang mit Lungenkrebs

(kritisch: Co-Konsum von Tabak- und Alkohol)

hoch	moderat	gering	sehr gering
		X	

Kein Zusammenhang mit Krebserkrankungen des Kopf- und

Halsbereichs

hoch	moderat	gering	sehr gering
	X		

Datenlage nicht ausreichend für andere Krebsarten

hoch	moderat	gering	sehr gering
			X

ORGANISCHE FOLGEN: ERGEBNISSE 8

Hirnstrukturelle Veränderungen (Volumen, Form, Dichte der grauen Substanz) wurden in Gehirnregionen, mit hoher Dichte an CB1 Rezeptoren (insbesondere <u>Hippocampus</u> und Amygdala) bei chronischen Cannabiskonsumenten beobachtet;

möglicherweise in direktem Zusammenhang mit der THC:CBD Ratio

hoch	moderat	gering	sehr gering
		X	

 Schwangerschaft: Cannabiskonsums während der Schwangerschaft assoziiert mit erhöhtem Risiko für eine Anämie der Mutter

hoch	moderat	gering	sehr gering
		X	

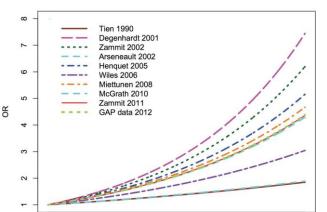
 Entwicklungsstörungen des Fötus (verringertes Geburtsgewicht und erhöhte Notwendigkeit für intensivmedizinische Behandlung)

hoch	moderat	gering	sehr gering
	X		

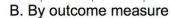
 Hinweise auf Störungen der kognitiven Entwicklung im Kindesalter und erhöhten Cannabiskonsum im Jugendalter.

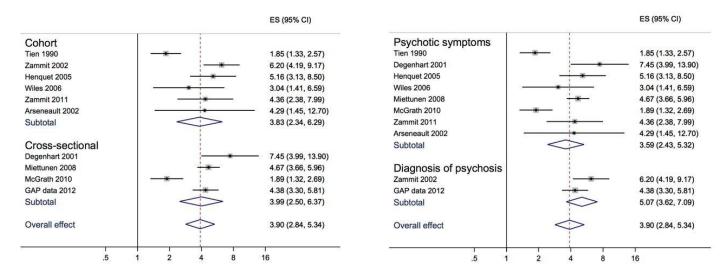
Cannabis: psychische Folgen

CANNABIS und Psychosen I



Klinik für Psychiatrie und Psychotherapie Herborn


vitos:


 Es liegt eine <u>substantielle Evidenz</u> eines statistischen Zusammenhangs zwischen Cannabiskonsum und dem Risiko, eine schizophrene Psychose zu entwickeln, vor. Besonders hoch ist das Risiko bei regelmäßigen Konsumenten.

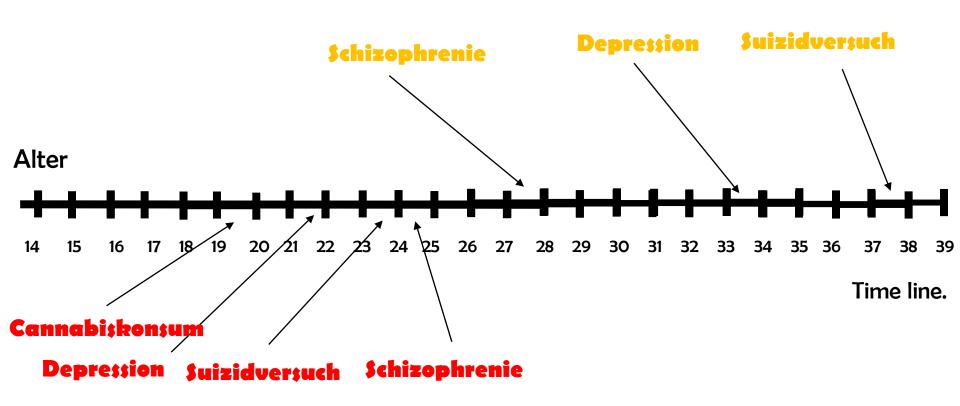
Psychosis risk distribution

A. By study design

Marconi et al., 2016 Schizophrenia Bulletin

Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

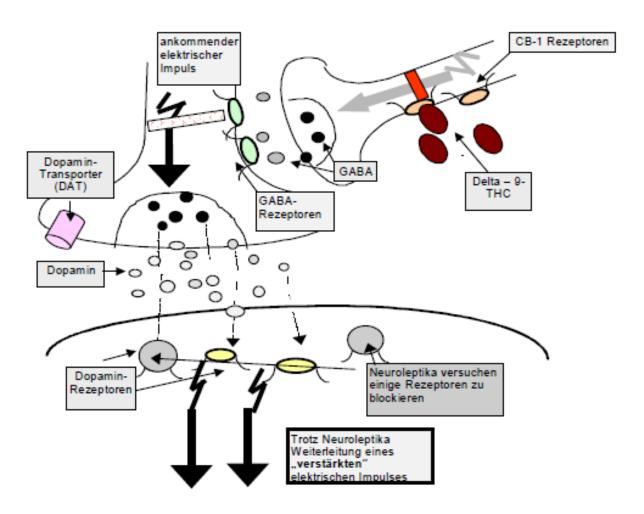
CANNABIS und Psychosen II


- Klinik für Psychiatrie und Psychotherapie Herborn
- Früherer Beginn von psychotischen Symptomen und Störungen: Large et al. (2011): n=83 Studien, n=22.519 Personen, Myles et al. (2012): n=40 Studien, n=18.578 Teilnehmer, im Durchschnitt 2.7 Jahre früher; kein früherer Beginn bei Tabakkonsumenten
- Cannabiskonsum und –störungen treten bei Personen mit schizophrenen Psychosen häufiger auf (junge Patienten mit Schizophrenie weisen eine hohe Rate an DD, 39-45% auf; Koskinen et al. 2010)
- Größeres Ausmaß an Positivsymptomen; Re-hospialisierungen und Rückfallrisiko der Psychose Schoeler et al. (2016): n=24 Studien, n=16.565 eingeschlossene Individuen

Hoch 2016

"Time line" \$chizophrenie +/- Cannabi\$kon\$um

COGA Schizophrenie ohne CB Konsum (Alter erstes Auftreten, n = 17)



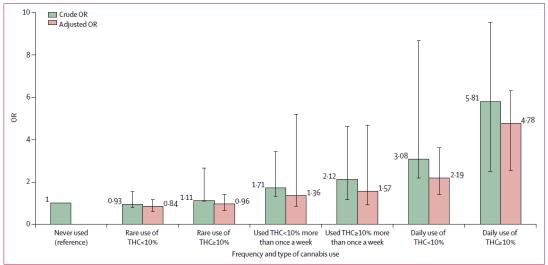
COGA Schizophrenie mit CB Konsum (Alter erstes Auftreten, n = 83)

Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

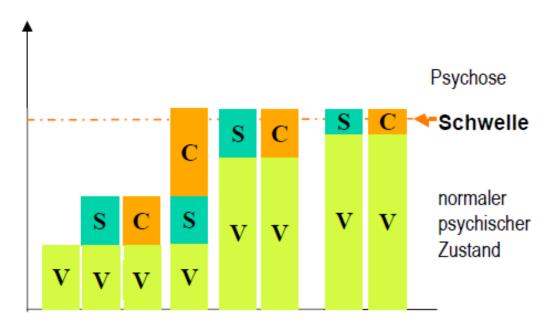
Cannabinoide und Dopamin

Wobrock et al. 2008

The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study



Marta Di Forti, Diego Quattrone, Tom P Freeman, Giada Tripoli, Charlotte Gayer-Anderson, Harriet Quigley, Victoria Rodriguez, Hannah E Jongsma, Laura Ferraro, Caterina La Cascia, Daniele La Barbera, Ilaria Tarricone, Domenico Berardi, Andrei Szöke, Celso Arango, Andrea Tortelli, Eva Velthorst, Miguel Bernardo, Cristina Marta Del-Ben, Paulo Rossi Menezes, Jean-Paul Selten, Peter B Jones, James B Kirkbride, Bart PF Rutten, Lieuwe de Haan, Pak C Sham, Jim van Os, Cathryn M Lewis, Michael Lynskey, Craiq Morgan, Robin M Murray, and the EU-GEI WP2 Group*



Daily cannabis use was associated with increased odds of psychotic disorder compared with never users (adjusted odds ratio [OR] 3,2, 95% CI 2,2–4,1), increasing to nearly five-times increased odds for daily use of high-potency types of cannabis (4,8, 2,5–6,3). The PAFs (population attributable fractions) calculated indicated that if high-potency cannabis were no longer available, 12,2% (95% CI 3,0–16,1) of cases of first-episode psychosis could be prevented across the 11 sites, rising to 30,3% (15,2–40,0) in London and 50,3% (27,4–66,0) in Amsterdam. The adjusted incident rates for psychotic disorder were positively correlated with the prevalence in controls across the 11 sites of use of high-potency cannabis (r = 0,7; p=0,0286) and daily use (r = 0,8; p=0,0109).

Wechselwirkungen Cannabiskonsum und Vulnerabilität für Psychosen

V = individuelle neurobiologisch verankerte Vulnerabilität

S = Stressoren

C = Cannabis

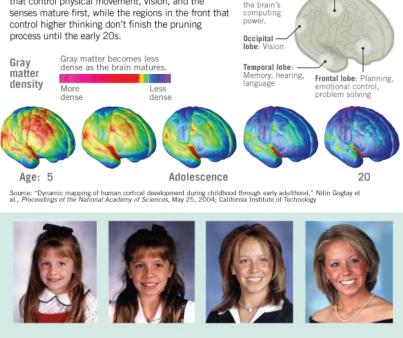
CANNABIS UND AFFEKTIVE STÖRUNGEN

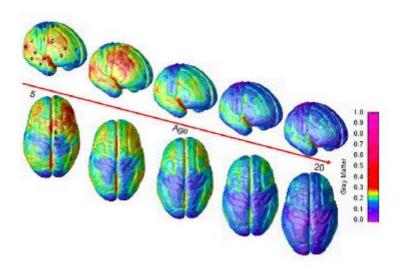
- Depressive Störung: Leicht erhöhes Risiko (OR=1,17), das mit der Intensität des Cannabiskonsums ansteigt (OR=1,6) (Lev-Ran et al., 2014: n=14 Studien, n=76.058 Probanden)
- <u>Suizidale Gedanken</u>: Evtl. erhöhtes Risiko,
 <u>Suizidales Verhalten</u>: Kein erhöhtes Risiko (Moore et al., 2007; Serafini et al., 2012).
- Angststörungen: Leicht erhöhtes Risiko (OR=1,24), das mit Intensität des Cannabiskonsums ansteigt (OR=1,7) (Kedzior et al., 2014: n=112.000 Probanden)
- <u>Bipolare Symptome</u>: Erhöhtes Risiko (OR=1,7), das mit der Intenstität des Cannabiskonsums ansteigt (OR=2,97) (Gibbs et al., 2014: Systematisches Review, n=14.918 Probanden)
- Bipolare Störungen: Erhöhtes Risiko (AOR=2,5) bei "wöchentlichem bis fast täglichem Cannabiskonsum" (Feingold et al., 2015: n=34 653 Teilnehmer)

Gehirnreifung und Cannabiskonsum

Spatial perception

Growing a Grown-up Brain


Scientists have long thought that the human brain was formed in early childhood. But by scanning children's brains with an MRI year after year, they discovered that the brain


Gray matter: Nerve

fibers that make up the bulk of

cell bodies and

undergoes radical changes in adolescence. Excess gray matter is pruned out, making brain connections more specialized and efficient. The parts of the brain that control physical movement, vision, and the process until the early 20s.

BESONDERHEITEN IM eCB SYSTEM

Entwicklungsspezifische Aspekte

■eCB System bereits früh während der **Embryonalentwicklung** funktionsfähig und an Prozessen der Gehirnreifung beteiligt (Überleben/ Proliferation neuronaler Stammzellen, Migration, Synaptogenese und axonales Wachstum)

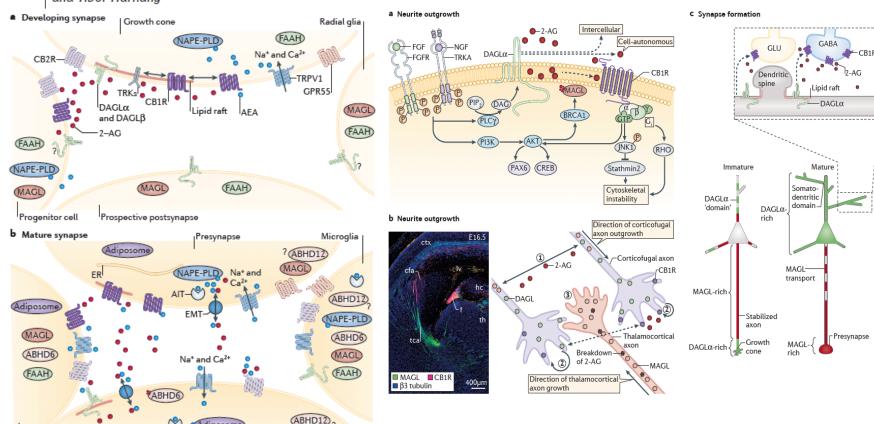
Maccarrone et al 2014

eCB System überaktiv/leichter aktivierbar mit Beginn der
 Pubertät => stärkere Effekte von Cannabinoiden (CB1 Bindungsstellen)

Schneider et al 2015

Geschlechtsspezifische Unterschiede

•Interaktion mit Sexualhormonen (z.B. Veränderte Verfügbarkeit und Vorkommen von eCB und Bindungsstellen während unterschiedlicher Menstruationszyklus-Phasen)


Argue et al 2017 Fattore und Fratta, 2010

Programming of neural cells by (endo) cannabinoids: from physiological rules to emerging therapies

Nature Review Neuroscience 2014

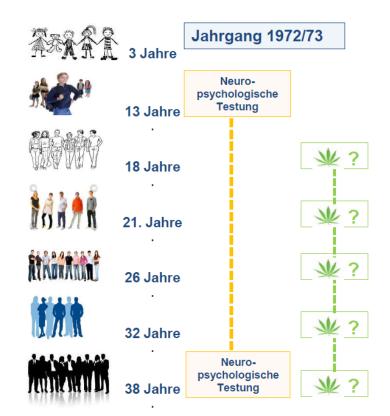
Mauro Maccarrone^{1,2}, Manuel Guzmán³, Ken Mackie⁴, Patrick Doherty⁵ and Tibor Harkany^{6,7}

Design logic of endocannabinoid signalling during neurite outgrowth and synaptogenesis

Molecular architecture of the endocannabinoid system during synaptogenesis and at mature synapses

Postsynapse

Kognitive und IQ-Defizite bei Cannabiskonsum


<u>Dunedin-Studie</u>

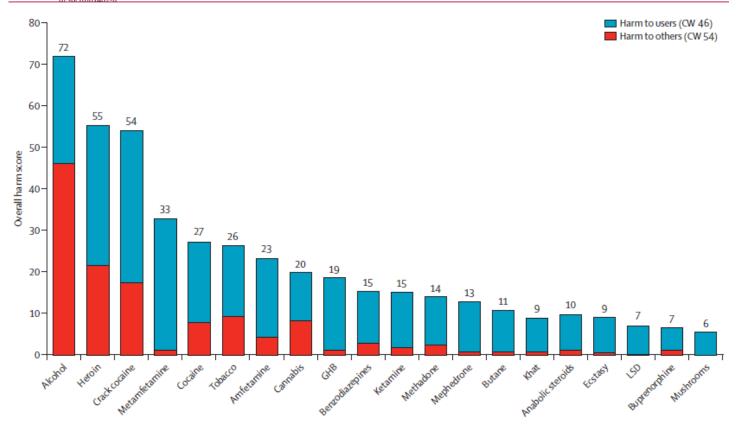
(Meier et al, 2012)

Kohorte (*n*=1037) (*1.4.1972 - 31.3.1973) wird in 2jährigem Abstand psychologisch untersucht. Aktuelle Untersuchung: 2010 – 2012.

> Neurotoxizität für Jugendliches Gehirn?

Bei Konsumbeginn < 18 Jahren und dauerhaftem Cannabiskonsum: IQ-Verlust von 8 Punkten! Nach Konsumstopp keine vollständige Reversibilität der kognitiven Defizite.

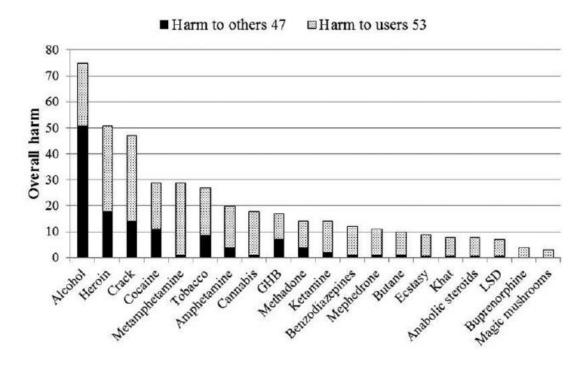
🍑 🕢 🦒 Drug harms in the UK: a multicriteria decision analysis


David J Nutt, Leslie A King, Lawrence D Phillips, on behalf of the Independent Scientific Committee on Drugs

Summary

Lancet 2010; 376: 1558-65 **Published Online** November 1, 2010 DOI:10.1016/S0140-6736(10)61462-6

Background Proper assessment of the harms caused by the misuse of drugs can inform policy makers in health, policing, and social care. We aimed to apply multicriteria decision analysis (MCDA) modelling to a range of drug harms in the UK.



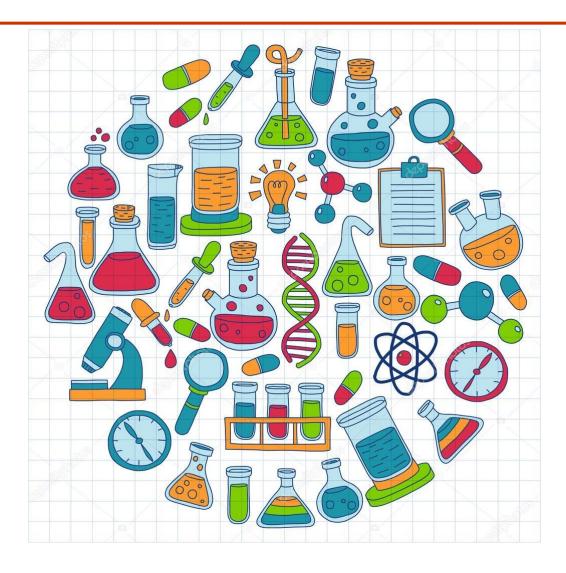
Drugs ordered by their overall harm scores, showing the separate contributions to the overall scores of harms to users and harm to others

The weights after normalisation (0–100) are shown in the key (cumulative in the sense of the sum of all the normalised weights for all the criteria to users, 46; and for all the criteria to others, 54). CW=cumulative weight. GHB=y hydroxybutyric acid. LSD=lysergic acid diethylamide.

European rating of drug harms

Jan van Amsterdam¹, David Nutt³, Lawrence Phillips⁴ and Wim van den Brink^{1,2}

Psychopharm


Journal of Psychopharmacology
1-6
© The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0269881115581980
jop.sagepub.com

The drugs ordered by their overall harm scores, with the stacked bar graphs showing the contribution to the overall score of harm to others and harms to users with a cumulative weight of 47 and 53, respectively. GHB; gamma-hydroxy-butyric acid; LSD: lysergic acid diethylamide.

Medizinische Cannabinoide:

Das neue "Cannabisgesetz" (10.3.2017)

- Im Gesetz KEINE Indikationen festgelegt
- Verschreibung für.....
 - "schwer Erkrankte"
 - "...eine allgemein anerkannte, dem medizinischen Standard entsprechende Leistung im Einzelfall nicht zur Verfügung steht"
 - diese Leistung "im Einzelfall nach der begründeten Einschätzung der behandelnden Vertragsärztin oder des behandelnden Vertragsarztes unter Abwägung der zu erwartenden Nebenwirkungen und unter Berücksichtigung des Krankheitszustandes der oder des Versicherten nicht zur Anwendung kommen kann"
 - Keine ganz entfernt liegende Aussicht auf Erfolg
 - → Patienten müssen NICHT "austherapiert" sein

KONSENTIERTE INHALTE DER EXPERTISE

A. Wirksamkeit, Verträglichkeit und Sicherheit von med. Cannabis sychotherapie Herbo

- 1. Chronischer Schmerz
- 2. Spastizität aufgrund von Multipler Sklerose und Paraplegie
- 3. Übelkeit, Erbrechen und Appetitstimulation bei HIV/AIDS und Krebs
- 4. Neurodegenerative, neuroinflammatorische und neurologische Erkrankungen
- 5. Augenerkrankungen
- 6. Psychische Erkrankungen
- 7. Selbstmedikation

B. Risiken des Cannabiskonsums zum Freizeitgebrauch

- 1. Kognition
- 2. Körperliche Erkrankungen
- 3. Psychosoziale Folgen
- 4. Fahrverhalten
- 5. Angststörungen, Depressionen/Suizidalität, bipolare Störungen
- 6. Psychotische Störungen
- 7. Synthetische Cannabinoide

CHRONISCHER SCHMERZ

Psychotherapie Herborn

Wirksamkeit

- Die Wirksamkeit von Cannabinoiden (Medizinalhanf, Extrakte der Hanfpflanze, synthetische Derivate von THC) bei chronischen Schmerzen wurde häufig untersucht.
- Keine Evidenz für eine substantielle Schmerzreduktion (>50%) durch Cannabinoide. Heterogene Befundlage für Schmerzreduktion >30%.
- Alle Übersichtsarbeiten finden sekundäre Wirksamkeitsbelege zugunsten der Cannabinoide (<u>Reduktion der "durchschnittlichen</u> <u>Schmerzintensität"</u> oder "globalen Verbesserung".
- Nabiximols ist bei chronischen Schmerzen am besten untersucht worden, die Evidenz für eine leichte Wirksamkeit ist gut. Für THC und Nabilon existieren einzelne Hinweise für positive Effekte.

hoch	moderat	gering	sehr gering
	x		

CHRONISCHER SCHMERZ: NEUROPATHISCHE SCHMERZEN

Wirksamkeit

- Wurden von allen Schmerzarten am besten untersucht.
- Cannabinoide (Nabiximols, Nabilon, Medizinalhanf, Dronabinol) führten in einer Meta-Analyse etwas häufiger zu einer Schmerzreduktion von mindestens 30% als Placebos.
- Die Wirkung von Nabiximols ist am besten untersucht.
 Medizinalhanf wurde vor allem für kurzfristige Effekte (bis zu 5 Tage) getestet. Es gibt Hinweise auf einen möglichem Deckeneffekt der analgetischen Wirkung bei höherer THC-Konzentration (7%).

hoch	moderat	gering	sehr gering
	x		

CHRONISCHER SCHMERZ: KREBSERKRANKUNGEN

Wirksamkeit

- Es liegen wenige RCTs bei fortgeschrittener oder endgradiger
 Krebserkrankung und Opioid-Therapie vor.
- Es gibt keine Evidenz für die Wirksamkeit von Cannabinoiden als "addon"-Therapie für eine Schmerzreduktion von mindestens 30% oder mindestens 50%, aber für Verbesserung der eher "weicheren", subjektiven Ergebnismaße.
- Einzelstudien fanden ein positives Wirkungs-Nebenwirkungsverhältnis für Nabiximols in niedriger und moderater Dosierung (1 RCT) und keine Wirksamkeit von Medizinalhanf (1 RCT).

hoch	moderat	gering	sehr gering
		x	

SPASTIZITÄT BEI MULTIPLER SKLEROSE UND PARAPLEGIE

Wirksamkeit

 Für Cannabinoide (Nabiximols, Dronabilol, Medizinalhanf, orales / oromukosales THC, THC/CBD) keine ausreichende Evidenz für eine "objektive" Wirksamkeit (Fremdrating: Ashworth Spastizitäts-Skala).

Konfidenzgrad (GRADE-CERQual, 2015)

 Heterogene Befundlage bezüglich "subjektiver" Wirksamkeit (häufig berichtet, jedoch auch oft ohne statistische Signifikanz).

hoch	moderat	gering	sehr gering
		х	

ÜBELKEIT, ERBRECHEN UND APPETITSTIMULATION

Chemotherapie:

Cannabinoide (Dronabinol, Nabilon, Levonantradol, Nabiximols) haben bei Krebspatienten signifikant bessere antiemetische Wirkung als Placebo (OR = 3,82) (3 neuere RCTs) und konventionelle Antiemetika (NNT = 4:1). Vergleichbare Wirksamkeit mit einem Leitlinien-Medikament (Ondansetron) (1 neuere RCT).

Konfidenzgrad (GRADE-CERQual, 2015)

hoch	moderat	gering	sehr gering
		x	

HIV/AIDS-Erkrankungen:

 Cannabinoide (Dronabinol, Cannabiszigaretten) haben eine leichte gewichtsstimulierende Wirkung (4 / 5 RCTs)

hoch	moderat	gering	sehr gering
		x	

SOMATISCHE ERKRANKUNGEN

Klinik für Psychiatrie und Psychotherapie Herborn

Morbus Crohn & Reizdarmsyndrom (1 SR mit 1 RCT, 1 RCT):

Cannabinoide (Cannabiszigaretten, Dronabinol) führten <u>zu keiner</u> Verbesserung der wichtigsten Beschwerden (2 RCTs). Eine Studie berichtet eine Besserung der M. Crohn Symptome sowie der Lebensqualität.

Tremor und Blasenschwäche bei Multipler Sklerose (1 SR mit 5 RCRs):

 Cannabinoide (Nabiximols, orale Cannabinoide) führten nicht zur Verbesserung. Nabiximols zeigt mögliche sekundäre Therapieerfolge auf spezifische Symptome der Blasenfunktion (1 RCT).

Chorea Huntington (1 SR mit 3 RCTs)

Cannabinoide (Nabilon, Nabiximols) haben keine signifikante
 Wirksamkeit (3 RCTs).

Konfidenzgrad (GRADE-CERQual, 2015)

hoch	moderat	gering	sehr gering
		x	

SOMATISCHE ERKRANKUNGEN

Epilepsie (1 SR mit 3 RCTs):

Die Behandlung mit Cannabidiol erbringt eine teilweise verbesserte
 Symptomatik bei therapieresistenten Epilepsie-Formen (3 ältere RCTs).

Dystonie (1 SR mit 2 RCTs):

 Keine Verbesserung der Symptomatik nach 3-wöchiger Behandlung mit Cannabinoiden (Dronabinol, Nabilon) bei primär zervikaler Dystonie

Morbus Parkinson (1 SR mit 4 RCTS, 2 Fallserien, 2 Beobachtungsstudien)

- Keine Verbesserung der Parkinson-Symptomatik oder Levo-Dopainduzierten Dyskinesien bei begleitender Therapie mit Cannabinoiden (CBD, THC/CBD, Nabilon, SR141716) (3/4 RCTs).
- Einzelne Studien zeigen spezifische Symptombesserungen (REM-Schlafstörungen, psychotische Störungen, subjektives Empfinden).

hoch	moderat	gering	sehr gering
		х	

ÜBELKEIT, ERBRECHEN UND APPETITSTIMULATION

<u>Palliativ-behandelten Krebs- und HIV/AIDS-</u> <u>Erkrankten:</u>

Cannabinoide (Dronabinol, Cannabiszigaretten)
haben leichte, n.s. Appetitsteigerung (4 RCTs)
und antiemetische Wirkung (2 RCTs)

Konfidenzgrad (GRADE-CERQual, 2015)

hoch moderat gering sehr gering

x

PSYCHISCHE STÖRUNGEN

Psychotherapie Herborn

Demenz:

- Eine ältere RCT mit positiven Effekten von Dronabinol (Dosis: 2 x 2.5mg/Tag) auf die Gewichtszunahme, Reduktion von Verhaltensauffälligkeiten und negativem Affekt (Wut, Angst, Traurigkeit).
- Zwei neue RCTS mit THC-Gabe (Dosis: 3 mg bzw. 4.5/Tag) zeigten keine Verbesserungen bzw. Zunahme von neuropsychiatrischen Symptomen, agitiertem Verhalten und Belastung der Pfleger.
 Konfidenzgrad (GRADE-CERQual, 2015)

hoch moderat gering sehr gering
x

Cannabisabhängigkeit

- Kombination von Dronabinol, Lofexidin und manualisierter Verhaltenstherapie führte nicht zu höheren Abstinenzraten gegenüber Placebo (1 RCT).
- Nabiximols reduzierte initial in der Abstinenzphasen signifikant häufiger Entzugssymptome, nicht jedoch von Craving, als Placebo (1 RCT).

hoch	moderat	gering	sehr gering
		x	

PSYCHISCHE STÖRUNGEN

Psychotherapie Herborn

<u>Opiatabhängigkeit:</u>

- Dronabinol (bis zu 30 mg/Tag) zeigte signifikante Reduktion in der Schwere des Opiatentzuges während der Entgiftung von Opiaten (Stabilisierung mit Buprenorphin) im Vergleich zu Placebo (1 RCT).
- Keine signifikanten Unterschiede im Anteil der Patienten, die erfolgreich auf Naltrexon eingestellt werden konnten, der Schwere der Entzugssymptome oder dem Anteil der regulären Therapiebeender.
 Konfidenzgrad (GRADE-CERQual, 2015)

hoch moderat gering sehr gering

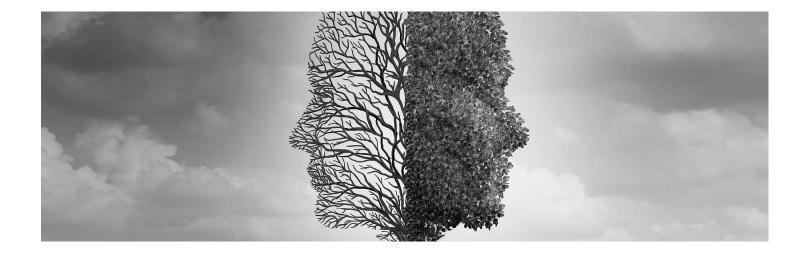
<u>Psychotische Störungen oder Schizophrenie:</u>

- Cannabidiol (Dosis: max. 800 mg/Tag; Dauer: 4 Wochen) war gleich wirksam wie das atypische Neuroleptikum Amisulprid (Dosis: max. 800 mg/Tag; Dauer: 4 Wochen) bezüglich der psychotischen Symptomatik (1 RCT).
- Keine Überlegenheit der Cannabidiol-Gruppe gegenüber der Placebo-Gruppe (1 RCT).
 Konfidenzgrad (GRADE-CERQual, 2015)

hoch	moderat	gering	sehr gering
		X	

SOMATISCHE ERKRANKUNGEN

Psychotherapie Herborn


Verträglichkeit und Sicherheit

- Beim therapeutischen Einsatz bei Chorea Huntington und Epilepsien zeigt sich kein signifikanter Unterschied zum Nebenwirkungsrisiko bei Placebos.
- Ansonsten treten Nebenwirkungen bei der Behandlung mit medizinischen Cannabinoiden gegenüber Placebo etwas häufiger auf, sind aber zumeist transient und nicht gravierend.
- Schwere Nebenwirkungen und Studienabbrüche aufgrund einer medikamentösen Unverträglichkeit treten bei der Untersuchung aller klinischen Anwendungsgebiete für Cannabinoide auf. Teilweise, aber nicht immer, liegen sie signifikant häufiger in den Interventions- als in den Kontrollgruppen vor.

hoch	moderat	gering	sehr gering
	x		

Studien zu medizinischem Cannabis bei psychischen Störungen

Cannabinoide bei Tourette Syndrom

Schwerpunkt

Schwarzunkt

Behandlung des Tourette-Syndroms mit cannabisbasierten Medikamenten

Treatment of Tourette Syndrome with cannabis-based medicine

Autorin

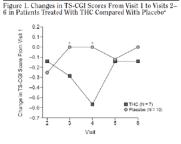
Kirsten R. Müller-Vahl

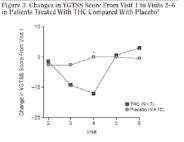
Institut

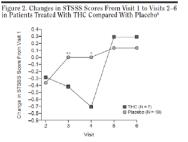
Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover

Schlüsselwörter

Tourette-Syndrom, Tics, Cannabis, Cannabinoide


Key words


Tourette syndrome, tics, cannabis, cannabinoids

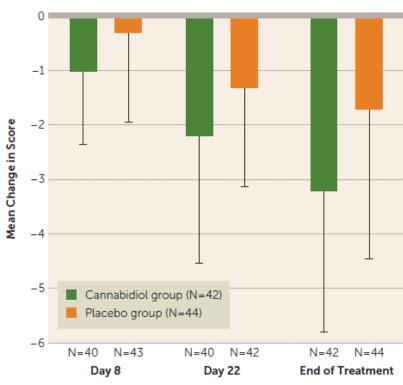

Bibliografie

DOI https://doi.org/10.1055/a-1096-4937 Nervenheilkunde 2020; 39: 314–319 © Georg Thieme Verlag KG Stuttgart · New York ISSN 0722-1541 Δ^9 -Tetrahydrocannabinol (THC) is Effective in the Treatment of Tics in Tourette Syndrome: a 6-Week Randomized Trial

Kirsten R. Müller-Vahl, M.D.; Udo Schneider, M.D.; Heidrun Prevedel; Karen Theloe; Hans Kolbe, M.D.; Thomas Daldrup, M.D.; and Hinderk M. Emrich, M.D.

Aktuelles zu Cannabinoide bei der Behandlung von Psychosen

Cannabidiol (CBD) as an Adjunctive Therapy in Schizophrenia: A Multicenter Randomized Controlled Trial



Philip McGuire, F.R.C.Psych., F.Med.Sci., Philip Robson, M.R.C.P., F.R.C.Psych., Daniel Vasile, M.D., Ph.D., Paul Dugald Morrison, Ph.D., M.R.C.Psych., Rachel I Adam Taylor, Ph.D., Stephen Wright, F.R.C.P.(Edin), F.F.P.M.

Baseline Characteristics of Patients in a Study of Adjunctive Cannabidiol in Schizophrenia

Characteristic	Cannabidiol (Group (N=43)	p (N=43) Placebo G		Total Sam	ple (N=88)
	N	%	N	%	N	%
Male	28	65.1	23	51.1	51	58.0
Race						
White or Caucasian	40	93.0	42	93.3	82	93.2
Black or African	2	4.7	1	2.2	3	3.4
Other	1	2.3	2	4.4	3	3.4
Positive baseline urine THC test	1	2.3	2	4.4	3	3.4
	Mean	SD	Mean	SD	Mean	SD
Age (years)	40.9	12.49	40.8	11.00	40.8	11.69
Height (cm)	172.4	7.79	170.0	9.31	171.2	8.63
Weight (kg)	84.2	15.68	82.0	18.44	83.1	17.08
Waist circumference (cm)	94.7	15.69	97.3	16.10	96.1	15.86
Body mass index	28.3	4.61	28.4	6.03	28.4	5.35

"Of the 88 patients randomized, 11 were recruited from sites in the U.K., 37 from sites in Poland, and 40 from sites in Romania"

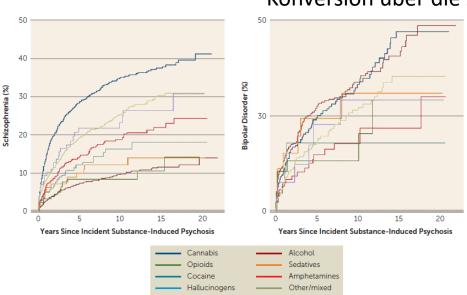
^aPANSS=Positive and Negative Syndrome Scale.


Change in PANSS Positive Scores From Baseline to End of Treatment in a Study of Adjunctive Cannabidiol in Schizophrenia (ITT Analysis)

McGuire et al Am J Psychiatry 2018; 175:225-231

Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

Rates and Predictors of Conversion to Schizophrenia or Bipolar Disorder Following Substance-Induced Psychosis


Marie Stefanie Kejser Starzer, M.D., Merete Nordentoft, Dr.Med.Sc., Carsten Hjorthøj, Ph.D., M.Sc.

Konversion über die Zeit

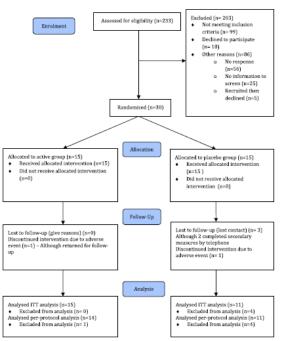
TABLE 1. Diagnoses of Patients With Incident Substance-Induced Psychosis in a Registry Study of Conversion to Schizophrenia and Bipolar Disorder

	Men		Wor	nen	All	
Substance and Earlier Diagnoses	N	%	N	%	N	%
Substance-induced psychosis	5,078	74.8	1,710	25.2	6,788	100.0
Alcohol	1,680	33.8	635	37.1	2,315	34.1
Opioids	88	1.7	70	4.1	158	2.3
Cannabis	1,222	24.1	270	15.8	1,492	22.0
Sedatives	33	0.7	87	5.1	120	1.8
Cocaine	136	2.7	34	2.0	170	2.5
Amphetamines	423	8.3	132	7.7	555	8.2
Hallucinogens	91	1.8	23	1.4	114	1.7
Mixed or other substances	1,405	27.7	459	26.8	1,864	27.5
Earlier diagnoses						
Substance use disorder	759	44.4	2,179	42.9	2,938	43.3
Attention deficit hyperactivity disorder	154	3.0	28	1.6	182	2.7
Personality disorder	831	16.4	464	27.1	1,296	19.1
Unipolar depression	426	8.4	262	15.3	688	10.1
Anxiety disorder	210	4.1	144	8.4	354	5.2
Autism	25	0.5	3	0.2	28	0.4
Eating disorder	4	0.1	43	2.5	47	0.7
Self-harm before psychosis	1,165	22.9	592	34.6	1,757	25.9

Konversion über die Zeit nach Substanz

Insgesamt erhielten 32.2% der rund 7000 Patienten mit induzierter Psychose im Beobachtungszeitraum die Diagnose einer Schizophrenie, 8.4% einer Bipolaren Störung. Höchste Konversion: 47.4% Cannabis (41.2% Schizophr., 6.2% Bipolar)

AJP 2018



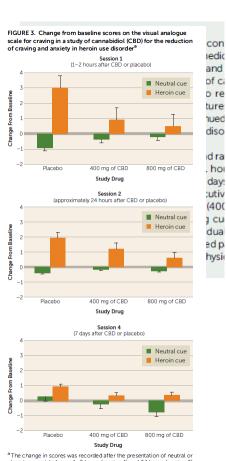
www.elsevier.com/locate/euroneuro

Cannabinoids in attention-deficit/hyperactivity (disorder: A randomised-controlled trial

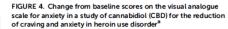
Ruth E. Cooper^{a,b}, Emma Williams^a, Seth Seegobin^{a,c}, Charlotte Tyea, Jonna Kuntsia, Philip Ashersona,*

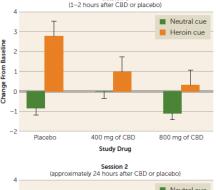
	Pre-treatment (M(SD))		Post-treatment (M(SD))						
	Active	Placebo	N A/P	Active	Placebo	N A/P	Est	SE	95% CI	p
Primary endpoint	t									
QbTest	1.73 (0.66)	1.71 (0.95)	14/14	1.32 (0.53)	1.46 (0.91)	15/11	-0.17	0.12	-0.40 to 0.07	0.16
QbTest: individua	al endpoints									
Qb Activity	2.66 (0.79)	2.61 (0.87)	14/14	2.13 (1.09)	2.43 (0.87)	15/11	-0.22	0.19	-0.61 to 0.16	0.24
Qb CE (%)	1.90 (2.48)	1.36 (1.35)	14/14	1.30 (1.04)	2.19 (3.20)	15/11	-0.81	0.39	- 1.62 to -0.01	0.05
Qb OE (%)	22.74 (15.22)	26.34 (21.13)	14/14	17.93 (14.51)	21.00 (17.92)	15/11	-1.32	2.75	-6.96 to 4.32	0.64
Qb RTV (ms)	210.79 (59.02)	198.00 (85.06)	14/14	172.00 (43.40)	172.00 (58.62)	15/11	-10.13	8.42	-27.37 to 7.11	0.24
Secondary endpo	ints									
ADHD Symptoms										
CW Inattention	27.27 (4.42)	27.33 (6.17)	15/15	17.60 (8.87)	21.92 (7.52)	15/13	-2.41	1.43	-5.34 to 0.52	0.10
CW Hyp/Imp	19.40 (4.24)	19.00 (7.44)	15/15	10.20 (5.58)	13.85 (7.46)	15/13	-2.45	1.07	-4.65 to -0.26	0.03
CW EL	15.60 (5.53)	19.07 (6.26)	15/15	8.47 (5.45)	12.08 (5.75)	15/13	-0.16	1.17	-2.56 to 2.24	0.89
Cognition										
SART CE	36.53 (16.24)	32.71 (16.55)	15/14	28.93 (17.41)	23.00 (15.55)	15/10	-1.23	2.19	-5.73 to 3.27	0.58
SART OE	51.80 (53.67)	41.00 (53.10)	15/14	43.07 (51.95)	20.20 (28.56)	15/10	2.11	5.99	- 10.18 to 14.40	0.73
SART RTV	186.85 (51.56)	156.32 (59.88)	15/14	177.04 (58.41)	134.60 (48.64)	15/10	- 1.09	7.88	- 17.25 to 15.06	0.89
Emotional lability	/									
CNS-LS	30.67 (15.43)	30.20 (16.95)	15/15	20.13 (15.46)	27.92 (12.44)	15/13	-3.77	2.28	-8.44 to 0.89	0.11
ALS	22.33 (11.14)	22.20 (9.51)	15/15	15.40 (9.49)	21.38 (9.14)	15/13	-2.92	2.19	-7.41 to 1.58	0.19
Functional impair	rment									
WFIRS Total	1.17 (0.52)	1.11 (0.33)	15/15	0.83 (0.49)	0.77 (0.26)	15/11	-0.02	0.09	-0.20 to 0.15	0.81

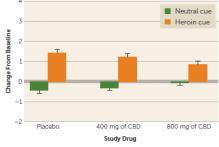
Note. A lower score indicates an improved outcome for all measures, M=mean, SD=standard deviation, SE=standard error, Est=estimate, OE=omission errors, CE=commission errors, RTV=reaction time variability.

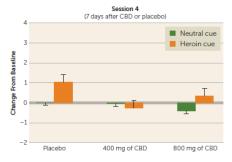

diagram for the EMA-C trial. من التعريب iatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn والمعربة المعربة الم

 $p \le 0.10$ trend.


 $p \le 0.05$ (nominally significant).


Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial


Yasmin L. Hurd, Ph.D., Sharron Spriggs, M.A., Julia Alishayev, R.P.A., Gary Winkel, Ph.D., Kristina Gurgov, R.P.A., Chris Kudrich, D.H.Sc., Anna M. Oprescu, M.P.H., Edwin Salsitz, M.D.



^aThe change in scores was recorded after the presentation of neutral or heroin-associated cues 1-2 hours (session 1) and 24 hours (session 2) after the first CBD or placebo administration, as well as 7 days after the third daily CBD or placebo administration (session 4). Error bars indicate standard deviation.

istration, in contrast to placebo, craving and anxiety induced by drug cues compared with neusignificant protracted effects on the final short-term (3-day) CBD reduced the drug cue-induced art rate and salivary cortisol levels.

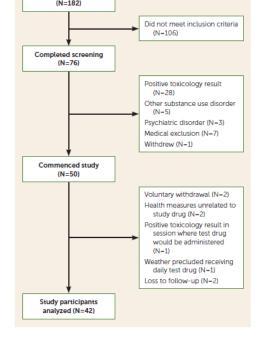
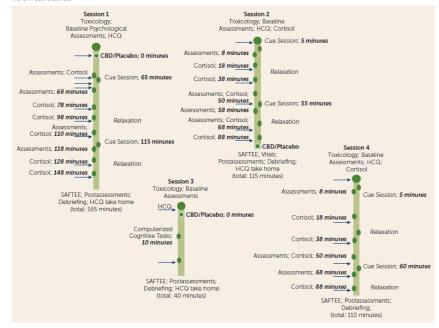



FIGURE 1. Schematic overview of the experimental design in a study of cannabidiol (CBD) for the reduction of craving and anxiety in heroin use disorder^a

Medizinisches Cannabis: Zubereitungsformen

Departments of Psychiatry, Psychotherapy und Psychosomatics MLU Halle, Vitos Herborn

Rezeptierung zubereiteter Arzneimittel

Klinik für Psychiatrie und Psychotherapie Herborn

- Nabilon (Canemes®)
 - synthetischer Abkömmling von Dronabinol
 - 1mg=7-8mg Dronabinol
 - Zulassung: Übelkeit und Erbrechen unter Chemotherapie bei bösartigen Tumoren

- ölige Tropfenlösung zur oralen Einnahme
- Kapseln
- Dronabinol Kapseln (Marinol®) à 2,5,
 5, 10 mg
 - Seit 1985 in den USA zugelassen

CBD als Arzneimittel bei schweren (therapieresistenten) **Epilepsien im Kindesalter (in Kombination mit Clobazam)**

DAZ ONLINE > NEWS > EU LÄSST CBD-...

Klinik für Psychiatrie und Psychotherapie Herborn

EPIDYOLEX BEI KINDLICHER EPILEPSIE

EU lässt CBD-Arzneimittel zu

Epidyolex darf künftig auch in der EU zur adjuvanten Behandlung (in Kombination mit Clobazam) von Krampfanfällen im Zusammenhang mit den schweren kindlichen Epilepsieformen Lennox-Gastaut-Syndrom oder Dravet-Syndrom, eingesetzt werden. (r/Foto: zilvergolf/stock.adobe.com)

Sativex:

Psychotherapie Herborn

Sativex®

- Sublingual-Spray (Resorption über Mundschleimhaut + durch Herunterschlucken über Magen-Darm-Trakt)
- THC:CBD=1:1
- Zulassung: Therapie resistente Spastik bei Multipler Sklerose

Rezeptierung Cannabisblütenextrakte

Psychotherapie Herborn

vitos:

- z.B. "Cannabisblüten Sorte Bedrocan; 5 gram"
- Verschreibungshöchstmenge:
 - Blüten: 100 000 mg in 30
 Tagen (3 g/ Tag)
 - THC: 1.000 mg
 - Dronabinol: 500 mg
- Unabhängig vom Gehalt der Cannabinoide (1-22%)
- THC-Verordnungen daher 1.000-22.000 mg
- Angabe der Cannabissorte
- Überschreitung der Höchstmenge möglich

THC-/CBD-Gehalte der Cannabisblüten					
Sorte	Gehalt THC	Gehalt CBD			
Bakerstreet (Indica)	ca. 23,4 %	< 0,5 %			
Argyle (Indica)	ca. 5,4 %	ca. 7,0 %			
Bedica, granuliert	ca. 14 %	< 1 %			
Bediol, granuliert	ca. 6,3 %	ca. 8 %			
Bedrocan	ca. 22 %	< 1 %			
Bedrobinol	ca. 13,5 %	< 1 %			
Bedrolite granuliert	< 1 %	ca. 9 %			
Green No. 3 (Hybrid)	ca. 8,1 %	ca. 11,7 %			
Klenk 18/1	ca. 18 %	< 1%			
Klenk 20/1	ca. 20 %	< 1%			
Klenk 22/1	ca. 22 %	< 1%			
Luminarium (Sativa)	ca. 24 %	< 1 %			
Nollia (Indica)	ca. 5 %	ca. 7 %			
Orange No. 1 (Indica)	ca. 13,5 %	< 0,5 %			
Peace Naturals 22/1	ca. 22 %	< 1%			
Peace Naturals 20/1	ca. 20 %	< 1%			
Peace Naturals 18/1	ca. 18 %	< 1%			
Peace Naturals 16/1	ca. 16 %	< 1%			
Pedanios 22/1 (Sativa)	ca. 22 %	< 1 %			
Pedanios 20/1 (Indica)	ca. 20 %	< 1 %			
Pedanios 18/1 (Indica)	ca. 18 %	< 1 %			
Pedanios 16/1 (Indica)	ca. 16 %	< 1 %			
Pedanios 14/1 (Sativa)	ca. 14 %	< 1 %			
Pedanios 8/8	ca. 8 %	ca. 8 %			
Penelope (Hybrid)	ca. 10,4 %	ca. 7,5 %			
Red No. 2 (Sativa)	ca. 20,3 %	< 0,5 %			
Red No. 4 (Indica)	ca. 19,3 % – 24,3 %	< 0,5 %			
Rex (Sativa)	ca. 17 %	< 1 %			
Sedamen (Indica)	ca. 23 %	< 1 %			
Stellio (Indica)	ca. 21 %	< 1 %			

Verschreibungsfähige Cannabisblüten (nach Grothenhermen und Göttsche 2018, Preuss et al 2018, Stand Sept 2018)

Übersicht zur Dosierung von Cannabisblüten

- Einschleichende Dosierung.
- Beginn mit maximal 50 mg eventuell nur 25 mg Cannabisblüten mit hohem THC-Gehalt (> 10 %) und maximal 100 mg Cannabisblüten mit geringem THC-Gehalt.
- Beim Ausbleiben einer Wirkung frühestens nach 60 Minuten Einnahme der doppelten Dosis. Nach frühestens weiteren 60 Minuten Einnahme der dreifachen Dosis, und so fort.
- Beim Auftreten einer leichten Wirkung nach frühestens 3 Stunden erneute Einnahme der letzten Dosis.
- Beim Auftreten unerwünschter Nebenwirkungen Reduzierung der nachfolgenden Dosen um eine Einheit (25-100 mg).
- therapeutische Tagesdosen von THC-reichen Cannabissorten bewegen sich zwischen 0,05 und 10 g, im Allgemeinen zwischen 0,2 und 3 g.

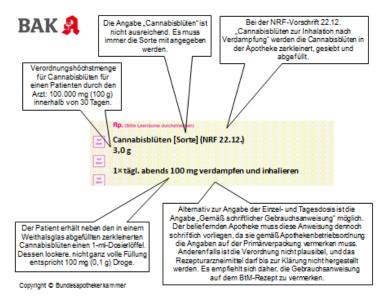
Psychosomatics MLU Halle, Vitos Herborn

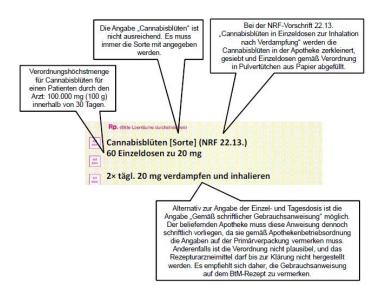
Verdampfer und Vaporisator

Daynavap M in Titanausführung

Abb. 8.1 A Volcano Medic, B Volcano Medic mit Ballon.
 Storz & Bickel GmbH

Stortz & Bickel, "Plenty"




Vollextrakte

zum Einnehmen	Tropfen zum Einnehmen
ng/ml, CBD 10mg/ml;	THC 25mg/ml, CBD <0,5mg/ml;
wirkstoffmenge	Gesamtwirkstoffmenge
THC, 250mg CBD	625mg THC, <12,5mg CBD
	25ml
nkernöl	Traubenkernöl
ungsmittel (BtM)	Betäubungsmittel (BtM)
	verschreibungspflichtig
	apothekenpflichtig
ng 2°-8°C	Lagerung 2°-8°C
	zum Einnehmen mg/ml, CBD 10mg/ml; twirkstoffmenge THC, 250mg CBD nkernöl ungsmittel (BtM) eibungspflichtig kenpflichtig

Aus Bundesapothekenkammer Information 2017

Departments of Esychiatry, Esychotherap

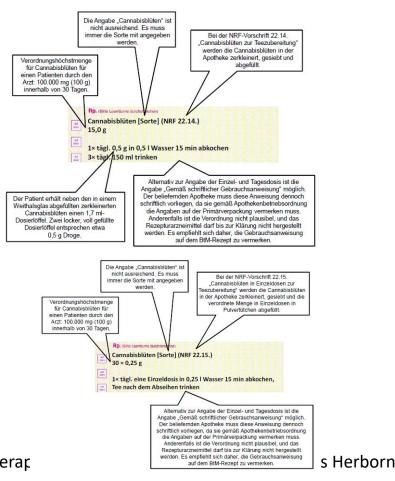
Rezepturvorschriften des NRF im Überblick

Dronabinol-Kapseln 2,5 mg / 5 mg / 10 mg (NRF 22.7)

Ölige Dronabinol-Tropfen 25 mg/ml (NRF 22.8)

Ölige Cannabidiol-Lösung 50 mg/ml (NRF 22.10)

Ölige Cannabisölharz-Lösung 25 mg/ml Dronabinol (NRF 22.11.)


Cannabisblüten zur Inhalation nach Verdampfung (NRF 22.12.)

Cannabisblüten in Einzeldosen zur Inhalation nach Verdampfung (NRF 22.13.)

Cannabisblüten zur Teezubereitung (NRF 22.14.)

Cannabisblüten in Einzeldosen zur Teezubereitung (NRF 22.15.)

Ethanolische Dronabinol-Lösung 10 mg/ml zur Inhalation (NRF 22.16.)

Gesellschaftliche Rahmenbedingungen

Versorgungsengpässe

Cannabis aus der Apotheke überraschend stark nachgefragt

Cannabis-Pflanzen auf dem Balkon einer Wohnung in Berlin.

FOTO: dpa

Exklusiv | Berlin. Cannabis ist seit März 2017 als Medikament in der Apotheke erhältlich. Die Krankenkassen haben bereits mehr als 13.000 Anträge auf Kostenübernahme erhalten. Inzwischen gibt es Versorgungsengpässe. Von Laura Ihme

Umfrage der Rheinischen Post bei Barmer, TK und AOK (10.1.2018)

2018: rund 95.000 Rezepte eingelöst

Bestandsaufnahme Cannabisarzneimittel

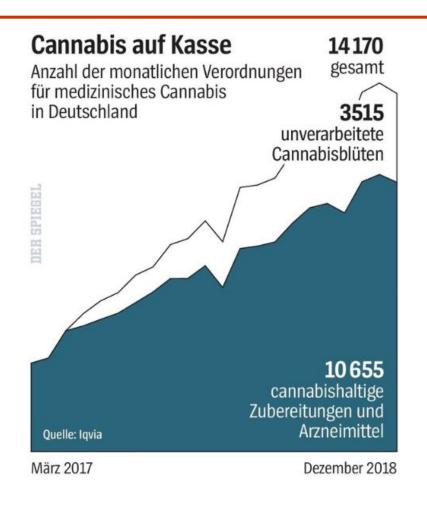
Cannabisarzneimittel

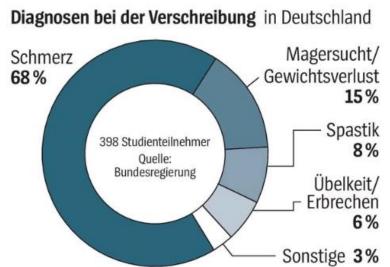
Schmerz steht an erster Stelle

Fast 5 000 Datensätze zur Therapie mit Cannabisarzneimitteln hat das Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) inzwischen gesammelt. Eine erste Auswertung gibt Aufschluss über die häufigsten Indikationen, aber auch über Abbruchgründe.

Cannabismundspray Sativex wurde bis zum 11. März 2019 fast 400 Schmerzpatienten verordnet.

Im Rahmen der Begleiterhebung dokumentiert das BfArM auch Nebenwirkungen. Hier nannte Cremer-Schaeffer mit 16 Prozent an erster Stelle Müdigkeit. Über Schwindel klagten zwölf Prozent. Seltener traten Übelkeit, Mundtrockenheit oder Gedächtnisstörungen auf (siehe Grafik).


Cannabis wirkt nicht immer


Mehr als ein Drittel der 3 138 Schmerzpatienten hat die Therapie vor Ablauf eines Jahres wieder abgebrochen. Fast jeder zweite Therapieabbrecher tat dies, weil die

Deutsches Ärzteblatt 24.5.2019

Medizinisches Cannabis Verordnungen und Diagnosen

Quelle: Der Spiegel, 15, 05. April 2019

https://www.spiegel.de/plus/medizinisches-cannabis-das-geschaeft-boomt-in-deutschland-a-00000000-0002-0001-0000-000163279561

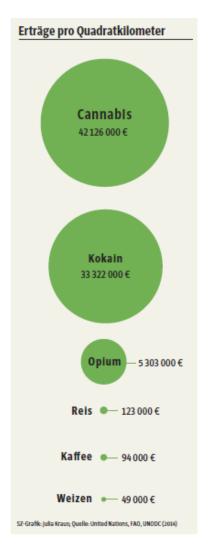
Cannabisanbau in Deutschland

Medizinische Zwecke

Deutschland baut bald 7200 Kilogramm Cannabis an

Zwei Unternehmen haben den Zuschlag erhalten, innerhalb der nächsten vier Jahre 7200 Kilogramm medizinisches Cannabis zu produzieren. Die erste Ernte ist für Ende 2020 geplant.

Germany	Forecast Medical Cannabis Market Value 2028 (€b)	Forecast Recreational Cannabis Market Value 2028 (€b)	Forecast Industrial Cannabis Market Value 2028 (€m)	₩ Total 2028 (€b)
Primary Market	7.8	5.4	25.6	13.2
Secondary Market		3.2		3.2
Total	7.8	8.5*	25.6	16.4


*may not sum due to rounding

http://www.amp-eu.com/wp-content/uploads/2019/01/PP_German-MMJ-research-report.pdf

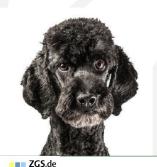
Spiegel Online 17.4.2019;

https://www.spiegel.de/gesundheit/diagnose/cannabis-behoerde-bringt-anbau-von-7200-kilogramm-auf-den-weg-a-1263373.html

"Cannabusiness"

Quelle: SZ 70, 3/4 April 2016

CBD FÜR TIERE



Hund und Katze sind in der heutigen Zeit mehr als nur beste Freunde des Menschen. Sie sind vollwertige Familienmitglieder. Herrchen und Frauchen möchten ihren Tieren dabei genau denselben Lebensstandard bieten, den sie auch selbst pflegen. Glücklicherweise verfügen auch alle Säugetiere über ein Endocannabinoid-System, und können damit auch die Vorteile unseres Produktes nutzen.

Gerade unsere Haustiere sind mit vielen Krankheiten und Leiden belastet, die wir nur zu gut von uns selbst kennen. So haben sie Schmerzen im Bewegungsapparat, haben Muskelverspannungen durch Schonhaltungen, sind gestresst durch die Umwelt, haben Allergien oder Magen-Darm-Erkrankungen. Da kann ein Einsatz von CBD helfen. Hunde und Katzen, die oft eine Gewitter- und Schussangst haben, können auf natürliche Weise und effektiv unterstützt werden.

Unser CBD kann schonend und ungefährdet vom Tierhalter bei akuten oder chronischen Beschwerden eingesetzt werden.

STUTTGARTER 75 ZEITUNG

Stellen Immo Sonderthemen Anzeigen Shop Newsletter

Abonnieren Login

Digitale Zeitung

Stuttgart Region BW Politik Wirtschaft Sport Panorama Kultur Wissen StZ Plus Reise Genuss & Leben =

Suche P

CBD für Dickhäuter

Warschauer Zoo studiert Wirkung von Hanföl auf gestresste Elefanten

Von red/ap - 28. August 2020 - 21:49 Uhr

Die Studie hat für sensationslüsterne Schlagzeilen gesorgt: Der Warschauer Zoo erwägt, Elefanten mit Hanföl zu behandeln, um in einer Studie zu prüfen, ob Hanföl den Stress der Tiere mindert.

Die Elefanten habe sie als Testgruppe ausgewählt, weil sie in jüngster Zeit ziemlich viel Stress gehabt Foto: AP/Czarek Sokolowski

3. Zusammenfassung Cannabis: Medizin und Rauschkonsum

Zusammenfassung I

- Cannabinoide: Heterogene Substanzen auf pflanzlicher Basis, wichtigste Wirkstoffe: Delta – 9-THC und CBD
- Endogenes Cannabinoidsystem, Cannabisrezeptoren
- Wirkungen von Cannabinoiden
- Epidemiologie
- Cannabiskonsumstörungen: schädlicher Gebrauch und Abhängigkeit

Zusammenfassung II

- CAPRIS: Cannabis Potential und Risiken
- Risiken somatisch
- Risiken psychische Störungen
 - Psychosen
 - Cannabiskonsum in der Jugend und die Folgen
- Medizinisches Cannabis
- Indikationen (insbesondere Anwendung bei psychischen Erkrankungen)
- Darreichungsformen: Medikamente, Blüten und Vollextrakte
- Rezeptierung in Deutschland
- Gesellschaftliche Rahmenbedingungen

29. Kongress der Gesellschaft für Suchtmedizin "Suchttherapie in Zeiten von Corona" Hybridkongress 6.-8. November 2020

Berlin

Das Wissen von heute ist morgen der Irrtum von gestern

